Гаммаграфический контроль сварных соединений
Всё о контроле качества сварных соединений
Проверка сварочных соединений — обязательный этап любых сварочных работ. Благодаря тщательному контролю можно выявить явные и скрытые дефекты, которые в дальнейшем повлияют на качество и долговечность всей металлической конструкции. Конечно, можно оценить качество сварного шваневооруженным взглядом, но это лишь один из методов.
С помощью визуального контроля вы не сможете обнаружить внутренние трещины и поры. Поэтому важно знать дополнительные способы контроля качества.
На крупных производствах эту работу выполняет контролер сварочных работ, но на меленьком заводе эта обязанность часто ложится на плечи сварщика.
В этой статье мы расскажем, как проверить швы и какие есть виды контроля качества помимо визуального осмотра.
Способы контроля качества сварного шва
Существуют разнообразные виды и средства технического контроля, все они имеют свои достоинства и недостатки, особенности и нюансы. Но несмотря на различия все они призваны, чтобы устроить швам испытание на прочность и долговечность.
Качество сварных соединений во многом зависит от сварщика и используемых комплектующих, так что итог контроля можно предсказать. Но мы все равно рекомендуем проводить контроль качества, чтобы быть уверенным, что изделия прослужат долго.
Качество сварных соединений можно узнать путем визуального осмотра (пожалуй, самый распространенный метод), ультразвукового, магнитного, капиллярного и радиационного (радиографического) контроля, также осуществляется контроль сварных швов на проницаемость.
Есть и другие методы контроля сварных швов, но мы в этой статье перечислим самые распространенные и простые в применении. Рекомендуем выполнять пооперационный контроль качества, т.е. сначала осмотреть шов, затем провести капиллярный контроль и так далее.Впрочем, обо всем по порядку.
Визуальный контроль
Начнем с визуального контроля. Это наиболее простой и быстрый способ узнать качество сварных швов. Вам не понадобятся специальные приборы или жидкости, достаточно вашей внимательности.
Тщательно осмотрите сварное соединение: не должно быть видимых дефектов вроде трещин и сколов, шов должен иметь одну ширину и высоту на всех участках. Внешний контроль сварочных швов позволяет также проверить наличие или отсутствие непроваров, наплывов, неравномерных складок шва.
Все это дефекты, обнаружив которые можно смело говорить о низком качестве соединения.
Для более эффективного контроля качества сварных швов мы рекомендуем использовать мощную лампу и лупу, также нелишним будет рулетка или линейка, штангенциркуль.
С помощью таких простых приспособлений вы сможете замерить размеры дефектов и понять, что с ними делать в дальнейшем.
Конечно, с помощью такого метода вы не сможете выполнить полноценный контроль сварных соединений трубопроводов, сварных соединений газопроводов или иных ответственных конструкций, но визуальный осмотр станет первой операцией, вслед за которой можно применить остальные методы контроля.
Капиллярный контроль
Методы контроля качества сварных соединений включают также испытания сварного шва. Для этого используется капиллярный метод. Его суть крайне проста: для контроля используются специальные жидкости, которые способны проникать в мельчайшие поры и трещинки, называемые капиллярами.
С помощью капиллярного операционного контроля можно проверить качество любого металла, с любым составом и формой. Зачастую такой метод используется, когда нужно узнать наличие скрытых дефектов невидимых для глаз, но нет бюджета, поскольку капиллярный контроль очень прост в применении и не требует наличия дорогостоящего оборудования.
Капиллярная оценка качества сварных соединений выполняется с помощью жидкостей, называемых пенетрантами (от английского слова «penetrant», что значит «проникающая жидкость»).
Такие жидкости обладают незначительным поверхностным натяжением, отчего легко проникают в мелкие капилляры и при этом остаются видимы для глаз.По сути, пенетранты заполняют полости и окрашивают дефекты, тем самым делая их видимыми.
https://www.youtube.com/watch?v=ZbnEIr5ITFc
Сейчас можно найти множество рецептов приготовления пенетранта, каждый из которых будет обладать своими свойствами и особенностями.
Можно приготовить пенетрант на основе воды или любой другой органической жидкости (скипидара, бензола, также сюда относится довольно популярная проверка сварных швов керосином.
Такие пенетранты очень эффективны и чувствительны к малейшим дефектам. Они уверенно занимают одну из лидирующих позиций среди методов по контролю качества.
Контроль на герметичность сварных швов
На жидкостях не заканчиваются испытания сварных швов. Их также нужно проверить на герметичность. Метод проверки на герметичность имеет множество названий: течеискание, пузырьковый метод контроля, пневмоиспытание, гидроиспытание и многие другие.
Но вне зависимости от названия суть их остается неизменна: обнаружение сквозных дефектов, ухудшающих герметичные показатели сварного соединения.
Проверка сварочных швов на герметичность выполняется с помощью газов (кислорода или азота), различных жидкостей (например, воды).
Метод во многом схож с капиллярным, но здесь газ или жидкость дополнительно подаются под большим давлением, под которым они как раз и распределяются в дефектные полости и выходят наружу. У этого метода есть своя классификация.
Бывает пневматический и гидравлический контроль, также швы можно проверить вакуумно или с помощью обдува воздухом, это подкатегории пневматического контроля. Но обо всем поговорим подробнее.
Начнем с пневматического метода контроля качества швов. Он подразумевает использование газа или воздуха, который направляется на соединение под давлением. При этом шов смазывается мыльным раствором.
Также есть разновидность пневматического контроля, называемая вакуумным контролем, когда с помощью специального оборудования создается искусственный вакуум, в него помещается деталь, а шов также предварительно смачивают мыльным раствором.
В местах со сквозными трещинами будут образовываться пузыри, указывающие на местонахождение дефекта.
При приготовлении мыльного раствора используется один кусок мыла на литр воды. Если предстоит работа при низких температурах (на улице зимой), то более половины воды рекомендуется заменить на спирт.Также рекомендуем подключить манометр, с помощью которого вы сможете контролировать показатель давления и сможете заметить, как оно будет падать при обнаружении дефектов.
Также нелишним будет использование предохранительного клапана, чтобы соблюсти технику безопасности.
Самая простейшая форма пневматического контроля — погружение детали в воду, без смазывания швов мыльным раствором и использования давления. Если у шва есть дефекты, то они дадут о себе знать, когда небольшие пузырьки воздуха начнут появляться из сварного соединения. Этот способ проверки качества можно назвать полевым, но он достаточно эффективный.
Также есть еще одна разновидность пневматического контроля, называемая контроль качества сварных швов и соединений с помощью аммиака. Аммиак подается вместо газа или воздуха, а швы предварительно покрывают специальной бумажной лентой. Аммиак проходит через шов и если имеются дефекты, то на ленте появляются красные пятна.
Второй тип контроля на герметичность — гидравлический. Здесь давление создают с помощью воды или масла.
Это очень интересный метод, поскольку деталь выдерживается в жидкости от 5 до 15 минут (в зависимости от особенностей металла), при этом зона около шва обстукивается молотком, удары должны быть слабыми.
Если есть дефекты, то при ударе жидкость начнет вытекать из предполагаемого места с трещиной или другим повреждением.
Магнитный контроль
Магнитный метод контроля заключается в использовании основ электромагнетизма. Контролер или сварщик с помощью специального прибора создает вокруг шва магнитное поле, которое испускает поток так называемых электромагнитных линий. Если они искажаются, значит есть дефекты. Искажения фиксируются магнитопорошковым способом.
При магнитопорошковом на поверхность шва предварительно наносят ферримагнитный порошок, который при искажении электромагнитной линии начинает скапливаться в месте дефекта.
Из-за этого магнитный контроль доступен только при работе с ферримагнитными металлами. Алюминий, медь, сталь с большим содержанием хрома и никеля не могут быть подвержены проверке.
В целом, это очень эффективный, но неудобный и дорогостоящий метод, так что его применяют только при контроле особо важных узлов.
Ультразвуковой контроль
Ультразвуковой способ очень интересен. Он основан на свойствах ультразвука. Ультразвуковые волны легко отражаются от краев трещины или скола, поскольку те обладают разными акустическими особенностями.
Говоря простыми словами, мы подаем на шов ультразвук, и если на своем пути он сталкивается с дефектом, то искажается и отображается в другом направлении.
При этом разные типы дефектов по-разному искажают ультразвуковую волну, так что их можно легко определить.
Контроль качества сварного шва с помощью ультразвуковых аппаратов применяется повсеместно, поскольку это довольно эффективный и при этом недорогой метод.По сравнению с другими методами (например, магнитным или радиационным) не нужно учитывать какие-то особенности металла или приобретать дорогостоящее оборудование.
Но есть и недостатки: контроль сварного соединения ультразвуком должен проводить специалист, а не обычный сварщик.
Радиационный контроль
Радиационный контроль сварных соединений (также называемый «радиографический контроль» и «гаммаграфический контроль сварных соединений») представляет собой мини-версию обычного рентгена.
Гамма-лучи проникают через металл и на специальной пленке фиксируются все возможные скрытые дефекты. Это самый передовой и дорогостоящий метод контроля качества, он требует современного оборудования и квалификации от контролера или сварщика.
Также избыточная работа с таким прибором может оказывать негативное воздействие на здоровье человека.
Недавно появилась цифровая радиография, которая выполняется с помощью компьютера. Здесь вместо пленки используют специальные многоразовые пластины, которые совместимы с любыми источниками радиации.
Но в отличие от классического радиационного контроля при цифровом методе изображения сохраняются сразу на компьютер, их можно масштабировать и кадрировать.
В будущем разработчики планируют довести этот процесс до автоматизма, чтобы не требовалось присутствие человека.
Вместо заключения
Контролер сварочных работ должен очень внимательно относиться к своей работе, поскольку от его внимательности зависит все.
Выполняя контроль качества сварки и сварных соединений записывайте все особенности и дефекты, которые сможете обнаружить. Комбинируйте различные методы контроля сварки, чтобы получить полную картину.
Не используйте разрушающие методы контроля сварных соединений, которые не подходят для тех или иных металлов.Сварка и контроль качества сварных соединений металлоконструкций — дело непростое, но обучившись этому лишь однажды вы сможете довольно быстро выполнять контроль даже в полевых условиях. Также не забывайте, что есть техника безопасности и ее нужно соблюдать не только при сварке, но и при контроле швов.
[Всего : 1 Средний: 1/5]
Гаммаграфический контроль сварных соединений
24.05.2017
Среди всех возможных разновидностей НК сварных швов, радиографический контроль (РК) сварных соединений является одним из самых точных. Он очень востребован в профессиональной сфере, где производятся качественные изделия, рассчитанные на существенную нагрузку, поскольку в них не допускается наличие каких-либо дефектов: непровара, микротрещин, раковин, пор и прочих видов дефектов.
Радиографическому контролю в соответствии с требованиями нормативных документов по НК подвергают сварные соединения металлоконструкций, нефтепроводов, газопроводов, выполненные всеми видами автоматической, полуавтоматической и ручной электродуговой сваркой плавлением. Метод радиографического контроля сварных соединений используется для металлов и их сплавов, выполненных сваркой плавлением, с толщиной свариваемых элементов 1-400 мм, с применением рентгеновского, гамма- и тормозного излучений и радиографической пленки.
Для проведения РК очень важно правильно выбрать источник излучения и радиографическую пленку, а также правильно подобрать параметры просвечивания.
Выбор источника излучения обусловлен технической целесообразностью и экономическoй эффективностью.
Основные факторы, опредeляющие выбор источника: заданная чувствительность; толщина и плотность материала ОК; производительность контроля; конфигурaция контролируемой детали; доступность еe для контроля и дp.
Например, пpи контроле изделий, в которыx допускаются дефекты большого размера, целесообразнее применение изотопов с высокой энергией, обеспечивающих малое время просвечивания. Для издeлий ответственного назначения испoльзуют рентгеновское излучение и толькo как исключение — изотопы, имеющие пo возможности наимeньшую энергию излучения.
Выбор радиографической пленки осуществляетcя пo толщине и плотности материала просвечиваемогo объекта, а также пo требуемой производительности и заданнoй чувствительности контроля.
Основные параметры РК
Энергия излучения определяет его проникающую способность и выявляемость дефектов в контролируемом изделии.
От мощности Р экспозиционной дозы излучения (МЭД) зависят производительность контроля, a также требования техники безопасности.
Плотность ρ контролируемого материала определяет необходимую МЭД и получение требуемой производительности и чувствительности.
Линейный коэффициент ослабления μо излучения в материале свидетельствует о проникающих свойствах излучения и выявляемости дефектов.
Дозовый фактор накопления β характеризует рассеяние излучения в материале изделия в зависимости от линейного коэффициента ослабления μо и толщины контролируемого изделия и оказывает заметное влияние на выявляемость дефектов. Он зависит от отношения суммы интенсивностей нерассеянного и рассеянного излучений к интенсивности нерассеянного излучения:
β = (Iн + Ip) /Iн .
Разрешающая способность детектора определяет его способность регистрировать рядом расположенные дефекты и бездефектные участки контролируемого изделия и характеризуется числом линий, равномерно распределенных на единице длины тест-образца.
Абсолютная чувствительность Wабс (измеряется в мм) говорит о размере минимально выявляемого дефекта или элемента эталона чувствительности.
Относительная чувствительность Wотн(измеряется в %) определяется отношением размера Δδ минимально выявляемого дефекта или элемента эталона чувствительности к толщине контролируемого изделия δ.Зависимость относительной чувствительности радиографии от основных параметров просвечивания выражается уравнением
Wотн = Δδ / δ= (2,3 ΔDminB) / (μо γD δ) • 100% (1)
где ΔDmin — минимальная разность плотностей почернения различаемая глазом; В — дозовый фактор накопления; γD — контрастность радиографической пленки.
На практике значение ΔDmin ≈ 0,006 …0,01. Значения γD, β и μо известны из литературы.
Помимо указанных факторов чувствительность радиографического контроля зависит также от : формы и места расположeния дефекта, величины фокусного расстояния, фокусного пятна трубки, типа рентгеновской пленки.
Чувствительность радиационного контроля
На чувствительность контроля оказывают влияние ряд факторов:
- параметры источника излучения: его энергия и мощность экспозиционной дозы, а в случае радионуклидных источников — их активность
- характеристика изделия химический состав, атомный номер, плотность, толщина, физические свойства (линейный коэффициент ослабления, дозовый фактор накопления)
- характеристики детектора: спектральная чувствительность, разрешающая способность, инерционность, размер рабочего поля, масштаб преобразования, коэффициент усиления яркости, геометрические искажения.
Учет этих данных позволяет оценить основные параметры контроля, к которым относят абсолютную и относительную чувствительность РК, геометрическую и динамическую нерезкость радиационного изображения.
Нерезкость рассеяния, преобразование радиационного изображения и предел разрешения радиационного преобразователя являются основными параметрами формирования световой картины. В соответствии с ГОСТ 7512-82 величина абсолютной чувствительности может быть вдвое меньше величины минимального дефекта, который необходимо выявить.
Поэтому при контроле важно правильно выбрать энергию излучения источника, направление просвечивания, детектор с необходимыми характеристиками и т. д.
Для просвечивания стали используют номограммы применения радиографических пленок (см. рисунок).
Пленку РТ-1 испoльзуют в основном для контроля сварных соединений большиx толщин, так как она обладаeт высокими контрастностью и чувствительноcтью к излучению. Универсaльную экранную пленку РТ-2 примeняют при просвечивании деталей различнoй толщины, при этoм время просвечивания пo сравнению c дpугими типами пленок наимeньшee.
Для контроля издeлий из алюминиевых сплавов или сплавов черных металлов небольшой тoлщины подходит высококонтрастная пленка РT-З и РТ-4.
Пpи дефектоскопии ответственных соединений применяется пленка РТ-5.
Этa пленка обладает достаочно высокой контрастностью, позволяет выявлять незначительныe дефекты, хотя и имеeт наименьшую чувствительность к излучению, чтo и увеличивает время экспозиции пpи контроле.Ориентировочно радиографическую пленку целесообразно выбирать по номограммам (рис. 1).
Для контроля сварных соединений различныx типов выбирают одну из схeм просвечивания, приведенных нa риcунке. Стыковые односторонние сварные соединения бeз разделки кромок, a такжe c V-образной разделкой просвечивают, кaк правило, пo нормали к плоскоcти свариваемых элементов (cм. рис. 2, схему 1).
Швы, выполненныe двусторонней сваркой c К-образнoй разделкой кромок, целесообрaзнee просвечивать пo сxеме 2 c применением в ряде cлучаeв двух экспозиций. В этом случаe направление центрального луча должнo совпадaть c линией разделки кромок. Допускаетcя просвечивание этих швов также и пo схеме 1.
Гаммаграфический контроль сварных соединений – Металлы, оборудование, инструкции
МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ
(МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION
(ISC)
МЕЖГОСУДАРСТВЕННЫЙ
СТАНДАРТ
s s
Рисунок 14 — Схема контроля при просвечивании через две стенки (одно изображение) |
Рисунок 15 — Схема контроля продольного сварного шва при просвечивании через две стенки (одно изображение) |
Рисунок 16 — Схема контроля изогнутых объектов при просвечивании через две стенки (одно изображение)
для оценивания стенки, ближайшей к пленке
а) Схема контроля без кромочного б) Схема контроля с кромочным
компенсатора компенсатором
1 — кромочный компенсатор Рисунок 17 — Схема контроля при просвечивании угловых сварных швов
Рисунок 18 — Схема контроля при просвечивании угловых сварных швов |
ГОСТ ISO 17636-1-2017
7.1.9 Схема контроля для материалов различной толщины — рисунок 19.
S |
Рисунок 19 — Схема контроля с использованием нескольких пленок |
7.2 Выбор напряжения на трубке и источника радиационного излучения
7.2.1 Источники рентгеновского излучения с напряжением до 1000 кВ
Для обеспечения высокой чувствительности контроля напряжение на рентгеновской трубке рекомендуется устанавливать по возможности более низким. Максимальные значения напряжения на трубке в зависимости от просвечиваемой толщины приведены на рисунке 20.
U, кВ |
U — напряжение на рентгеновской трубке; w — просвечиваемая толщина; 1 — медь/никель и сплавы на их основе; 2 — сталь; 3 — титан и сплавы на их основе; 4 — алюминий и сплавы на его основеРисунок 20 — Максимальное напряжение на рентгеновской трубке для источников с максимальным возможным напряжением до 1000 кВ как функция от просвечиваемой толщины и материала |
11
В случаях, когда толщина объекта контроля меняется вдоль его сечения, может быть использован модифицированный способ с более высоким напряжением, но чрезмерно высокое напряжение трубки приведет к потере чувствительности контроля. Для сталей увеличение должно быть не более чем на 50 кВ, для титана — не более чем на 40 кВ, и для алюминия — не более чем на 30 кВ.
7.2.2 Прочие источники излучения
В таблице 2 приведены рекомендуемые диапазоны просвечиваемых толщин для источников гамма-излучения и рентгеновского оборудования с энергией свыше 1 МэВ.
Таблица 2 — Диапазон просвечиваемых толщин для источников гамма-излучения и рентгеновского оборудования с энергией свыше 1 МэВ для стали и сплавов на основе меди и никеля | ||||||||||||
| ||||||||||||
а Для алюминия и титана просвечиваемая толщина 10 мм < w < 70 мм для класса А и 25 мм < w < 55 мм для класса В.ьДля алюминия и титана просвечиваемая толщина 35 мм < w< 120 мм для класса А. |
По согласованию между изготовителем и заказчиком просвечиваемая толщина для 1г 192 может быть уменьшена до 10 мм, а для Se 75 — до 5 мм.
На тонких стальных образцах гамма-излучение от источников Se 75, Ir 192 и Со 60 не позволяет получить радиограммы с такой же хорошей чувствительностью контроля, как при рентгеновском излучении, использованном с надлежащими техническими параметрами.
Однако, поскольку источники гамма-излучений имеют преимущества в обращении и доступности, в таблице 2 приведен диапазон толщин, для которых может быть использован каждый из этих источников гамма-излучения, в случае, когда применение рентгеновских трубок затруднено.
В определенных случаях допускается более широкий диапазон толщин, если может быть достигнуто удовлетворительное качество изображения.
В тех случаях, когда радиограммы получают с использованием гамма-излучения, время установки источника излучения в положение просвечивания не должно превышать 10 % от общего времени экспозиции.
Контроль качества сварных соединений: методы, их особенности, правила применения и эффективность
В сварочных работах очень большое значение имеет контроль качества сварного шва.
При качественно проведенной проверке можно найти дефекты, способные снизить качество и долговечность данного шва и привести к аварийным ситуациям, в частности, к утечкам в трубопроводах. Самый простой способ проверки – визуальный.
Осмотр соединения поможет найти явные недостатки, однако при простом осмотре не обнаружатся скрытые дефекты, при сваривании часто образуются внутренние трещины и поры.
На больших предприятиях существует отдельная должность контролера качества, однако, чаще всего, сварщик осуществляет такую проверку самостоятельно. Используется несколько методов контроля, мы вам о них расскажем.
Варианты контроля качества
Используется несколько различных методов контроля, некоторые из них требуют применения специального оборудования. Все они применяются для проверки прочности и надежности сварных соединений.
Качество шва зачастую предсказуемо, потому что зависит оно от мастерства сварщика и используемых им оборудования и материалов, однако самый опытный сварщик может допустить ошибку, а цена такой ошибки может быть слишком высока.
Самый распространенный способ контроля – визуальный, он используется в 100% случаев. Кроме него существуют и более сложные методы, такие как магнитный, ультразвуковой, радиографический и капиллярный.
Кроме этого, часто сварной шов проверяется на протекание. Для достижения максимального результата необходимо применять последовательно несколько способов.
Визуальный контроль качества
Самый простой и быстрый способ обнаружить недостатки соединения, не требующий дополнительного оборудования либо материалов.
Осмотр должен производиться тщательно, шов должен быть осмотрен полностью. Не должно быть видимых дефектов, трещин, шов должен быть ровным и равномерным, с одинаковой толщиной и высотой по всей длине.
Не должно быть непроваренных участков, наплывов, складок. При наличии какого-либо из перечисленных дефектов шов считается некачественным. Для более детального осмотра шва можно использовать мощный осветительный прибор и лупу.
Если дефекты все же обнаружены, вам могут пригодиться измерительные инструменты для их замеров.
Визуальный метод не позволит вам выполнить полноценную проверку соединения, однако с него рекомендуется начинать. После него применяются другие варианты.
Капиллярный способ
Также несложный и недорогой метод. Для него необходимы специальные жидкие средства, способные заполнять мельчайшие поры и трещины. С помощью этого метода можно проверить деталь любой формы из любого материала.
Такие жидкости называются пенетрантами, (penetrant (англ.) – проникающая жидкость).
Они отличаются малой величиной поверхностного натяжения, за счет этого проникают в самые маленькие трещины и поры. При этом они хорошо видимы и качественно маркируют все имеющиеся дефекты.
Такие жидкости можно приобрести в готовом виде, а можно приготовить самим, в сети можно найти множество рецептов. Каждый из них позволяет приготовить жидкость со своими свойствами.Распространены пенетранты на основе скипидара, бензола. Часто применяется керосин. Капиллярный метод является одним из самых удачных.
Герметичность соединения
Качество сварного шва зависит не только от наличия явного или скрытого брака, например трещин или пор. Важной характеристикой сварного соединения является его герметичность.
Проверка сварного соединения на герметичность имеет много названий – гидроиспытание, пузырьковый способ и др.
Разница в названии не меняет сути проверки – поиск пробоев, нарушающих герметичность шва. Проводится такая проверка с использованием газов либо жидкостей.
Способ схож с капиллярным, но здесь средство подается под давлением и проникает в имеющиеся отверстия.
Метод этот может быть гидравлическим либо пневматическим., зависит это от используемого для проверки вещества. При пневматическом способе можно проверить шов как обдувая его воздухом, так и используя вакуум.
Пневматический способ
Здесь используется газ или воздух, подающийся в область соединения под давлением. Шов предварительно покрывается раствором мыла.
В местах, где герметичность соединения нарушена, образуются мыльные пузыри. Так же деталь можно проверить, не обдувая ее, а помещая в вакуум. Мыльный раствор готовится из расчета 1 кусок мыла на 1 литр воды.
Рецепт зависит от состояния окружающей среды, при температуре ниже нуля рекомендуется заменить 50% воды спиртом. На наличие дефектов может указывать падение давления, поэтому желательно использовать манометр.
По технике безопасности при таком методе должен быть установлен защитный клапан. Самым простым методом пневматического контроля с давних пор является погружение детали в воду. В местах сквозных дефектов мы увидим пузырьки воздуха.К способам пневматического контроля относится также проверка соединения аммиаком. Шов предварительно покрывается особой лентой, а в область соединения под давлением направляется аммиак. В местах пробоев лента окрашивается в красный цвет.
Гидравлический способ
Смысл тот же, что и при пневматическом методе, однако веществом для проверки шва является вода либо масло. Деталь после сваривания помещается в жидкость на 5-15 мин.
Продолжительность зависит от материала, из которого деталь сделана. Зона соединения несильно простукивается молотком. При наличии пробоев, через них будет вытекать средство контроля.
Магнитнопорошковый способ
Проверка заключается в создании в области соединения магнитного поля. На поверхность шва наносится ферромагнитный порошок.
Под действием магнитного поля порошок располагается в направлении его линий, искажения формы этих линий указывают на наличие дефектов.
Этот метод эффективен, однако сложен и дорог, поэтому применяется он только для проверки особо ответственных деталей.
Ультразвуковой способ
Один из самых необычных способов контроля, основан на свойствах ультразвука. Ультразвук подается в область соединения. Если дефект присутствует, отраженные волны искажаются, по этому искажению можно определить наличие дефекта и его тип.
Единственный недостаток этого метода – применяться он может только подготовленным специалистом. В остальном этот метод достаточно удобен и эффективен, может применяться для любых металлов.
Радиографический метод
Метод, называемый еще радиационным или гаммаграфическим, является уменьшенной версией стандартного рентгена. Метод современный, эффективный, однако довольно дорогостоящий и ограниченный по времени работ, так как является вредным для здоровья.
Гамма-лучи, проходя через деталь, отмечаются на на специальной пленке. Так можно увидеть любой скрытый дефект.
Метод постоянно совершенствуется. Появилась его новая разновидность – цифровая радиография, использующая компьютеры. Изображение сохраняется, выводится на монитор, далее его можно редактировать для облегчения обнаружения дефектов.
Планируется сделать этот процесс полностью автоматизированным, без участия человека.
Заключение
Должность контролера качества очень ответственна и требует серьезных навыков. Хороший специалист подберет оптимальный набор методов контроля, в зависимости от формы детали, металла, из которого она состоит, условий проведения работ.
Не стоит забывать также, что при проверке качества следует выполнять все правила техники безопасности, как и при сварочных работах.
Контроль сварных соединений. Методы контроля дефектов сварки
Дефекты в сварных соединениях бывают двух типов: внешние и внутренние. К внешним дефектам относятся наплывы, подрезы, наружные непровары и несплавления, поверхностные трещины и поры. К внутренним дефектам относятся скрытые трещины и поры, внутренние непровары и несплавления, шлаковые включения и др. (рис. 1).
Рис. 1. Виды дефектов в сварных соединениях: (а – г) – внешние дефекты: наплывы, подрезы, наружные непровары и несплавления, поверхностные трещины и поры; (д – ж) – внутренние дефекты: скрытые трещины и поры, внутренние непровары и несплавления, шлаковые включения
На рис. 2 – 8 показаны схемы и фотографии дефектов в сварных соединениях.
Рис. 2. Продольная трещина сварного соединения
Рис. 3. Пористость в сварном шве
Рис. 4. Наплывы в сварном шве.
Рис. 5. Макроструктура сварного шва (проплав)
Рис. 6. Трещины в сварном шве
Рис. 7. Кратер в сварном шве
Рис. 8. Подрезы в сварном шве
Качество сварных соединений обеспечивают предварительным контролем материалов и заготовок, текущим контролем за процессом сварки и приёмочным контролем готовых сварных изделий. В зависимости от нарушения целостности сварного соединения при контроле различают разрушающие и неразрушающие методы контроля.
3. Методы контроля
При предварительном контроле основного и сварочных материалов устанавливают, удовлетворяют ли сертификатные данные в документах заводов-поставщиков требованиям, предъявляемым к материалам в соответствии с назначением и ответственностью сварных узлов и конструкций.
Перед сборкой и сваркой заготовок проверяют, соответствуют ли их форма и габаритные размеры установленным, а также контролируют качество подготовки кромок и свариваемых поверхностей. При изготовлении ответственных конструкций сваривают контрольные образцы. Из них вырезают образцы для механических испытаний.
По результатам испытаний оценивают качество основного и сварочных материалов, а также квалификацию сварщиков, допущенных к сварке данных конструкций.При текущем контроле проверяют соблюдение сварщиками установленных параметров режимов сварки и исправность работы сварочного оборудования. Осматривают сварные швы для выявления внешних дефектов и замеряют их геометрические размеры. Замеченные отклонения устраняют непосредственно в процессе изготовления конструкций.
Готовые сварные соединения в зависимости от назначения и ответственности конструкции подвергают приёмочному контролю:
- внешнему осмотру для выявления поверхностных дефектов;
- обмеру сварных швов;
- испытаниям на плотность;
- магнитному контролю;
- просвечиванию рентгеновским и гамма-излучениям, ультразвуком для выявлений внутренних дефектов (рис. 9)
Рис. 9.
Методы контроля сварных соединений: а – рентгеновский; б – гамма-излучением; в – ультрозвуковой 1 – рентгеновская трубка; 2 – рентгеновские лучи; 3 – сварной шов; 4 – кассета с рентгеновской плёнкой; 5 – ампула с радиоактивным изотопом; 6 – свинцовый контейнер; 7 – гамма-лучи; 8 – сварное соединение; 9 – рентгеновская плёнка; 10 – кассета; 11 – сварное соединение; 12 – пьезометрический щуп; 13 – ультразвуковой дефектоскоп; 14 – осциллограф
На плотность испытывают ёмкости для хранения жидкостей, сосуды и трубопроводы, работающие при избыточном давлении, путём гидравлического и пневматического нагружения, с помощью течеискателей и керосином.
Магнитный контроль основан на намагничивании сварных соединений и обнаружения полей магнитного рассеяния на дефектных участках (рис. 10).
Рис. 10. Проверка качества сварных швов магнитной дефектоскопией
При контроле качества сварки магнитными дефектоскопами используется явление электромагнетизма. Прибор создает вокруг исследуемой области магнитное поле, поток линий которого, проходя через металл, искривляется в местах дефектов.
Это искажение фиксируется определенными способами, из которых в сварочном производстве используются два – магнитопорошковый и магнитографический.
При первом, на поверхность сварного соединения наносят сухой или влажный (в смеси с маслом, керосином или мыльным раствором) ферромагнитный порошок (например, железный), который скапливается в местах дефектов, свидетельствуя, таким образом, о наличие несплошностей.
Более совершенный магнитографический способ предполагает наложение на шов ферромагнитной ленты, на которой после пропускания ее через прибор проявляются имеющиеся дефекты (рис. 11).
Рис. 11. Проверка качества сварных швов магнитной дефектоскопией: 1 – магнит, 2 – сварной шов, 3 – дефект, 4 – магнитная пленка.
Магнитным способам контроля могут подвергаться только ферромагнитные металлы. Хромоникелевые стали, алюминий, медь, не являющиеся ферромагнетиками, магнитному контролю не подлежат.
Рентгеновское просвечивание основано на различном поглощении рентгеновского излучения участками металла с дефектами и без них.
Сварные соединения просвечивают с помощью специальных рентгеновских аппаратов. После проявления плёнки на ней фиксируют участки повышенного потемнения, которые соответствуют дефектным местам в сварном соединении.Вид и размер дефектов определяют сравнением плёнки с эталонными снимками (рис. 12).
Рис. 12. Выявление дефектов в сварных швах
Применяемые в промышленности рентгеновские аппараты позволяют просвечивать сварные соединения из стали толщиной 10 – 200 мм, алюминия до 300 мм, меди до 25 мм. При этом фиксируют дефекты, размеры которых составляют 2% толщины металла.
Просвечивание гамма-лучами (рис. 13) по сравнению с рентгеновским имеет ряд преимуществ. Благодаря портативности аппаратуры его можно применять в любых условиях (в цехах, полевых условиях, на монтаже и т.п.). Кроме того, просвечивание гамма-лучами – менее дорогостоящий способ.
Рис. 13. Просвечивания гамма-лучами сварных швов
Недостатком его является низкая чувствительность при просвечивании малых толщин (до 50 мм). На больших толщинах чувствительность такая же, как у рентгеновского метода.
Ультразвуковой контроль основан на способности ультразвуковых волн отражаться от поверхности раздела двух сред. При встрече с поверхностью дефекта возникает отражённая ультразвуковая волна, дефект фиксируется на экране осциллографа.
Промышленные ультразвуковые дефектоскопы (рис. 14) позволяют обнаруживать дефекты на глубине 1 – 250мм. При этом можно выявлять дефекты с минимальной площадью (1 – 2 мм2). С помощью ультразвукового метода можно выявить наличие дефекта и даже место его расположения, но нельзя установить его вид.
Рис. 14. Проверка сварных соединений трубопроводов
Радиографический контроль сварных соединений
С момента появления первых способов соединения деталей при помощи сварки встал вопрос о необходимости контроля качества соединительных швов.
Опираясь на существующие технологии, разработчики создали различные методики, позволяющие с той или иной точностью выявить грозящие разрушению конструкций дефекты. Но среди них нет одного, универсального, способного удовлетворить все существующие запросы производства.
На сегодняшний день при проведении сварочных работ всё равно приходится выбирать, чему следует отдать предпочтение.
- Более простым и дешёвым процессам, не требующим наличия сложного оборудования, способным дать достаточно приблизительную оценку состояния шва.
- Довольно сложным и дорогостоящим методикам, которые применимы только на располагающем определёнными технологическими возможностями производстве, зато показывающим более полную и объективную картину.
В ситуациях, когда прочность шва играет ключевую роль и недопустимы даже незначительные его дефекты, приходится задействовать пусть и затратные, но точные способы дефектоскопии. Именно к таким относится радиографический контроль сварных соединений.
Основанный на принципах просвечивания контролируемого участка детали рентгеновскими или гамма-лучами, метод радиографического контроля сварных швов – один из самых точных. Как и все технологически сложные процессы, он имеет свои достоинства и недостатки.
Признанные достоинства
Основными преимуществами подобного способа дефектоскопии принято считать:
- Возможность выявления скрытых дефектов, находящихся внутри сварного шва. Поскольку невидимые снаружи каверны и трещины снижают прочность готового изделия точно так же, как и те, которые находятся на поверхности, их необходимо своевременно обнаружить, что простым методикам часто не под силу.
- Высокую точность полученных данных, позволяющих оценить размеры и характер дефекта, место его расположения. На основании полученной информации появляется возможность выявить причину возникновения брака и принять меры к её устранению.
- Малое время, необходимое для проведения обследования и оценки данных. Это означает, что метод радиографического контроля сварных швов применим не только на ответственных участках работы, но и в массовом производстве.
- Возможность документирования результатов. Подобно тому, как врач подшивает в медицинскую карту больного рентгеновский снимок, проводящий технологический контроль специалист может подшить в паспорт готового изделия снимок с точными данными обследования.
Существующие недостатки
Широкому распространению современной технологии мешают существенные и пока не устранённые недостатки.
- Требуется наличие сложного специального оборудования. Такое оснащение стоит денег, а это значит, что его покупка не под силу организациям с ограниченным бюджетом. Для домашнего пользования подобная методика точно не подходит.
- Необходимы специфические расходные материалы, доступ к которым ограничен.
- Обязателен жёсткий контроль за правильным использованием оборудования и оборотом расходных материалов, поскольку при нарушении инструкций по их применению и хранению они могут представлять опасность для здоровья и даже жизни людей.
- Работающий с оборудованием и материалами персонал должен обладать необходимой, довольно высокой, квалификацией. Освоить сложный процесс под силу далеко не каждому.
Основываясь на перечисленных достоинствах и недостатках, следует оценивать для каждого конкретного случая необходимость в оснащение производства участком радиографического контроля сварных швов.
Основные принципы
Суть процесса, нормируемого ГОСТ 7512-86, состоит в просвечивании контролируемого участка рентгеновскими или гамма-лучами от источника, помещённого в специальную защитную капсулу. Эта капсула необходима для того, чтобы защитить от вредного излучения находящихся поблизости людей и оборудования.
Поскольку однородный металл поглощает лучи лучше, чем нарушающие его структуру пустоты, то места дефектов проявляются в виде светлых пятен, форма и размеры которых соответствуют форме и размерам выявленных трещин, каверн и других пустот.
При этом регистрация результатов дефектоскопии может производиться различными способами.
- На бумагу или плёнку, поверхность которых покрыта слоем химического вещества, чувствительного к излучению. Такой метод фиксации данных дефектоскопии точен, но снижает скорость проведения обследования. Он хорошо зарекомендовал себя при изготовлении ограниченных партий ответственных деталей высокой точности.
- С помощью специальных веществ, получивших название «сцинтилляторы», обладающих способностью поглощать не видимое глазу излучение и преобразовывать его в видимый свет. С помощью нехитрого преобразователя получаемое при этом изображение выводится на монитор, что даёт возможность производить дефектоскопию сварного шва в реальном времени. Эта технология подходит для массового производства, а также применяется для контроля сварных соединений строящихся и ремонтируемых трубопроводов. В последнем случае капсулу с излучающим веществом, как правило, помещают внутрь трубопровода и, вместе с остальным оборудованием, выполняют мобильной.
Ключевые моменты
Для того чтобы результаты радиографического контроля были достоверны, следует выполнить ряд условий.
- С поверхности контролируемого шва удаляются окалина, шлак и другие загрязнения, из-за которых может быть искажена реальная картина.
- Плотность потока излучения должна быть достаточной для того, чтобы сделать возможным регистрацию толщины контролируемого объекта.
- На протяжении всего времени обследования плотность излучения должна быть стабильной и иметь постоянный характер.
- Согласно требованиям ГОСТ, для каждого объекта контроля разрабатываются технологические карты.
Характеристики источника излучения подбираются в зависимости от типа исследуемого материала и его толщины. Только когда перечисленные требования соблюдены, можно полностью полагаться на полученные результаты.
Безопасность – превыше всего!
Одной из важнейших проблем, которую следует решить, используя методику радиографического контроля сварных соединений, это обеспечение мер по технике безопасности.
- Во избежание широкого распространения излучение, используемое оборудование должно быть надёжно экранировано. В качестве одного из возможных вариантов защиты, подойдут листы свинца. Впрочем, современная промышленность производит и другие материалы, вроде специальных пластиков и даже тканей. Их также можно использовать, ведь главное – чтобы защита была герметична и хорошо выполняла своё назначение.
- Оператор, управляющий процессом, должен быть максимально удалён от установки, а посторонние лица удалены из зоны, где производится обследование.
- Если возникла острая необходимость пребывания людей в зоне повышенной опасности при работе оборудования, то работников нужно обеспечить средствами индивидуальной защиты. Время самого пребывания в зоне контроля следует максимально сократить, поскольку даже малые дозы излучения накапливаются с течением времени, оказывая негативное влияние на организм человека.
- При использовании в качестве источника излучения радиоактивных веществ, обеспечить их безопасное хранение, а также транспортировку к месту проведения работ.
Недопустимо использовать заведомо неисправную технику. Это может повлиять не только на результаты дефектоскопии. Под угрозой окажется здоровье людей, причём не только тех, что обеспечивают функционирование оборудования. Излучение, накопленное в самой детали, способно оказать негативное воздействие на всех, кто даже случайно оказался рядом.
Область применения
Несмотря на определённые трудности, связанные с использованием, радиография находит всё более широкое применение. Основная причина – высокая точность получаемых результатов. К тому же, методика позволяет решить такую проблему, как обнаружение внутренних дефектов. При правильном подходе, технология может с успехом использоваться почти во всех областях промышленности и строительства.
- Возведение несущих каркасов многоэтажных зданий или безопорных перекрытий.
- Изготовление корпусов судов вне зависимости от конструктивных особенностей их набора и обшивки.
- Прокладка трубопроводов, по которым впоследствии будут перекачиваться различные виды топлива или просто вода, пищевые продукты или ядовитые химикаты.
- Производство подвергающихся высоким нагрузкам особо ответственных деталей самолётов и ракет.
- Проверка находящихся в длительной эксплуатации металлических конструкций путепроводов и мостов.
- Контроль состояния сварных швов оружейных систем.
- Изготовление высокоточного медицинского оборудования.
Во всех этих случаях может быть использован радиографический метод контролья.
Важно учесть заблаговременно
Собираясь приобрести промышленный рентгенографический аппарат, нужно точно определиться, какие детали и материалы предстоит обследовать с его помощью.
Ведь на сегодняшний день выпускается большое количество подобного рода систем, а характеристики каждой модели имеют определённые ограничения. Всё поступающее на рынок оборудование рассчитано на выполнение узкого круга задач.
Ввиду того что устройства проходят обязательную сертификацию и представляют повышенную опасность, их самостоятельное изготовление недопустимо!
По своей конструкции рентгеновские аппараты отличаются характеристиками излучающей трубки, на которые в первую очередь влияют сила тока, его напряжение и габариты излучателя.
Отталкиваясь от этих параметров устройства с различным размером фокусного пятна, углом выходя излучения и максимально возможной толщиной просвечиваемой стали.
Встречаются рентгеновские аппараты непрерывного и импульсного действия, кабельные и моноблочные.
Гамма-дефектоскопы
В некоторых случаях для обеспечения радиографического контроля предпочтительнее использование не рентгеновской аппаратуры, а гамма-дефектоскопов, внутрь которых помещают закрытые радиоактивные источники.
В качестве излучающего материала могут быть задействованы изотопы тулия, селена, иридия, цезия, кобальта и т. п.
Возможности оборудования, например, толщина просвечиваемого металла, во многом зависят от используемого радиоактивного вещества, при замене которого изменяются и характеристики излучения.
Важный стандарт
Для ознакомления с требованиями к радиографическому контролю в полном объёме целесообразно изучить ГОСТ 7512-86. В этом документе имеется вся необходимая информация. Тем же, кто собирается использовать методику на производстве, изучение стандарта строго обязательно, поскольку ответственность за его несоблюдение нешуточная.
Поделись с друзьями
0
0
0
0