Генератор из асинхронного двигателя своими руками 220в

Генератор из асинхронного двигателя – схема, как сделать своими руками?

Генератор из асинхронного двигателя своими руками 220в

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя

схема генератора на базе асинхронного двигателя

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  1. Обмотка возбуждения, которая находится на специальном якоре.
  2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

Устройство генератора

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  1. Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  2. Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  3. Контактные кольца имеют надежный крепеж к валу ротора.
  4. В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  5. Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  6. Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  1. Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре. Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  2. Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  3. Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  4. Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  5. Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  6. Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  7. После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  8. Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  9. Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  10. Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  11. Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  12. Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Такж,е потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

  1. В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.
  2. Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.
  3. При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

Функционирование асинхронного двигателя как генератора

В соответствии с принципами, по которым функционируют все подобные машины, работа асинхронного двигателя после преобразования в генератор происходит следующим образом:

  1. После подключения конденсаторов к зажимам, на обмотке статоров происходит ряд процессов. В частности, в обмотке начинается движение опережающего тока, который создает эффект намагничивания.
  2. Только при соответствии конденсаторов параметрам необходимой емкости, происходит самовозбуждение устройства. Это способствует возникновению симметричной системы напряжения с 3 фазами на статорной обмотке.
  3. Значение итогового напряжения будет зависеть от технических возможностей используемой машины, а также от возможностей используемых конденсаторов.

Благодаря описанным действиям происходит процесс преобразования асинхронного двигателя короткозамкнутого типа в генератор с подобными характеристиками.

Применение

В быту и на производстве такие генераторы широко применяются в различных сферах и областях, но наиболее востребованы они для выполнения следующих функций:

  1. Использование в качестве двигателей для ветряных электростанций, это одна из наиболее популярных функций. Многие люди самостоятельно изготавливают асинхронные генераторы для задействования их в этих целях.
  2. Работа в качестве ГЭС с небольшой выработкой.
  3. Обеспечение питанием и электроэнергией городской квартиры, частного загородного дома или отдельного бытового оборудования.
  4. Выполнение основных функций сварочного генератора.
  5. Бесперебойное оснащение переменным током отдельных потребителей.

Советы по изготовлению и эксплуатации

Необходимо обладать определенными навыками и знаниями не только по изготовлению, но и по эксплуатации подобных машин, помочь в этом могут следующие советы:

  1. Любая разновидность асинхронных генераторов вне зависимости от сферы, в которой они применяются, является опасным устройством, по этой причине рекомендуется провести его изоляцию.
  2. В процессе изготовления устройства необходимо продумать монтаж измерительных приборов, поскольку потребуется получение данных о его функционировании и рабочих параметрах.
  3. Наличие специальных кнопок, с помощью которых можно управлять устройством, в значительной степени облегчает процесс эксплуатации.
  4. Заземление является обязательным требованием, которое необходимо реализовать до момента эксплуатации генератора.
  5. Во время работы, КПД асинхронного устройства может периодически снижаться на 30-50%, побороть возникновение этой проблемы не представляется возможным, поскольку этот процесс является неотъемлемой частью преобразования энергии.

Загрузка…

Генератор из асинхронного двигателя своими руками: 3 схемы

Генератор из асинхронного двигателя своими руками 220в

Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.

Эта статья рассказывает, как можно просто и надежно сделать генератор из асинхронного двигателя своими руками по одной из трех доступных схем, а в ее конце приведен видеоролик, автор которого воплотил в железе эту идею.

Однако там есть ошибочные выводы. Не повторяйте их.

Секреты подбора электродвигателя

Асинхронная машина может работать в режиме:

1. двигателя, когда на нее подается электрическое напряжение;

2. или генератора, если вращать ее ротор с определенной величиной крутящего момента от дополнительного источника. Им может быть любой двигатель внутреннего сгорания, водяная турбина, ветряное колесо или другой источник энергии.

Отработавшие на производстве трехфазные электродвигатели часто списывают. Они попадают в руки домашнего мастера практически бесплатно или по символической цене.

Ими не сложно воспользоваться для решения бытовых или хозяйственных задач. Потребуется только оценить конструкцию: возможности по выработке электроэнергии определенного напряжения и мощности от источника энергии с конкретным числом оборотов.

Для этого следует изучить характеристики статора и ротора.

Коротко о статоре

Конструкция статора асинхронного двигателя представлена:

· тремя обмотками, по которым проходит электрический ток;

· магнитопроводом из пластин электротехнического железа, созданному для передачи магнитного потока.

Соединение концов обмоток может выполняться схемой звезды либо треугольника. Каждый вариант имеет свои особенности. Их надо учитывать для различных условий эксплуатации.

Чтобы не отвлекать ваше внимание на этот вопрос рекомендую тем, кого он интересует, ознакомиться с этой информацией более подробно в статье о способах подключения трехфазного асинхронного электродвигателя в однофазную сеть.

Она будет полезна многим людям.

Что надо знать о роторе

Он имеет три обмотки из изолированного провода. по которым протекают наводимые токи и формируют суммарный крутящий момент магнитного поля.

Эти обмотки могут быть:

1. выведены на внешние клеммы статора через контактные вращающиеся кольца с щеточным механизмом. Его называют ротором с фазной обмоткой;

2. короткозамкнуты встроенным алюминиевым кольцом — «беличье колесо».

Выглядят они следующим образом.

Для бытовых целей предпочтительнее использовать электродвигатель у которого работает короткозамкнутый ротор. О нем идет речь дальше.

Однако, если попалась в руки модель с фазным ротором, то ее легко переделать в короткозамкнутую: достаточно просто зашунтировать выходные контакты между собой.

Важные электрические характеристики

Чтобы сделать генератор из асинхронного двигателя стоит учесть:

· поперечное сечение провода обмотки. Оно ограничивается тепловым воздействием от протекающих суммарных токов, формируемых как от активной нагрузки, так и реактивных составляющих;

· число оборотов, на которые рассчитан электродвигатель. Это оптимальная величина, котрой следует придерживаться при выборе подключения к источнику энергии;

· КПД, cos φ;

· схему подключения обмоток.

Эти величины указываются на табличке корпуса или рассчитываются косвенными методами.

Как работает двигатель в режиме генератора

При раскрутке ротора необходимо возбудить электромагнитное поле. Его добиваются за счет параллельного подключения к обмоткам емкостной нагрузки от батареи конденсаторов разными методами. Рассмотрим их.

Две схемы звезды

Типовое подключение выглядит следующим образом.

Упрощенный вариант схемы показан ниже.

Здесь применяют рабочий и пусковой конденсаторы, которые коммутируются собственными переключателями.

Схема треугольника

Она позволяет вырабатывать 220 вольт линейного напряжения.

Как подобрать конденсаторы

Емкость конденсатора для возбуждения генератора можно подсчитать по формуле, исходя из реактивной мощности, частоты и напряжения.

С=Q/2π∙f∙U2.

Следует учитывать, что они по разному влияют на нагрев обмоток в различных режимах. Поэтому для холостого хода и работы генератора используют ступенчатое переключение.

Рекомендуемые расчеты представлены таблицей.

Конденсаторную батарею рекомендую набирать из бумажных моделей на 500 вольт. Пользоваться электрическими конструкциями не рекомендую даже при включении каждой полугармоники через диод.

Электролит при нагревании может закипеть, что приведет к взрыву корпуса.

Особенности эксплуатации

Для безопасной работы необходимо:

· правильно подобать измерительные приборы;

· включить в схему защиты автоматический выключатель и УЗО;

· смонтировать схему резервного питания;

· правильно выбрать систему напряжения;

· избегать перегрузок за счет эффективного подключения потребителей;

· контролировать рабочую частоту на выходе.

О том, как это сделать, подробно раскрыто в статье на моем сайте: «Как сделать генератор из асинхронного двигателя». Рекомендую прочитать и выполнить.

Генератор из асинхронного двигателя: схема, таблица, инструкция, как сделать своими руками + фото от мастера!

Генератор из асинхронного двигателя своими руками 220в

В настоящее время хорошо известен способ превращения электрической энергии во вращательное движение. Для этого человечество изобрело электродвигатели. Они имеют множество разновидностей, начиная от двигателей постоянного тока и заканчивая асинхронными двигателями переменного тока, но суть этого преобразования одна — электричество преобразуется во вращательное движение.

И без электричества человечество слабо представляет себе собственное существование. Поэтому в местах где нет электричества или существуют его серьезные перебои необходимость генераторов в сегодняшнем мире жизненно необходима.

Причем если существует бесплатный источник вращения, то ли вода или ветер, то такой генератор превращается в мини электростанцию. Так как стоимость электричества создаваемого бензиновым или дизельным генератором достаточно велика.

Зачем нужны асинхронные генераторы?

Если рассмотреть фото асинхронных генераторов, то легко заметить что с первого взгляда практически невозможно отличить их от обыкновенных двигателей.

Суть в том, что это практически одни и те же электрические машины используемые в другом направлении и имеющие разные схемы подключения. Поэтому достаточно просто переделать одну такую машину в другую.

Эта статья поможет разобраться в том как это осуществить на практике. В современном мире множество генераторов и большинство из них асинхронные. Так как значительным преимуществом таких электрических машин является их простота, надежность и легкость в наладке системы.

Типы асинхронных генераторов

Если рассмотреть виды асинхронных генераторов, то их все можно разделить на две категории по виду электроэнергии которые они вырабатывают. Это однофазные и трех фазные.

По способу возбуждения генератора существуют модели с внешним источником возбуждения, для этого нужен дополнительный источник энергии и генераторы с самовозбуждением, которые могут работать совершенно автономно.

Именно такие генераторы можно применять для мини электростанций.

Устройство асинхронных генераторов

При рассмотрении устройства асинхронных генераторов, необходимо обратить особое внимание на основные элементы электрической машины без которых он не сможет существовать, а именно:

  • Ротор генератора — это элемент вращения, на котором наводится электродвижущаяся сила. Именно вал ротора и является тем элементом, который приводится в движение. Обычно обладает короткозамкнутыми обмотками.
  • Статор или статарная обмотка неподвижный элемент крепящийся к корпусу генератора и внутри которого находится ротор. Именно в этой обмотке индуцируется рабочее напряжение генератора.
  • Корпус генератора.
  • Подшипники, удерживающие ротор в рабочем положении.
  • Элементы безопасности такие как, термореле, коротко замыкатель и щетки регулятора.

Как функционирует генератор

Принцип работы асинхронных генераторов изучался еще в средней школе. При вращении ротора на нем наводится ЭДС создающая вращающееся магнитное поле. Это вращающееся магнитное поле вырабатывает в катушке статора электромагнитную индукцию, которая и снимается с генератора.

Важнейшим недостатком таких генераторов является невозможность регулировки получаемого в результате генерации напряжения.

Поэтому чаще всего такое напряжение подается на полупроводниковый выпрямительный мост и превращается в постоянное. Удобное для дальнейшего применения.

Как сделать генератор своими руками

Инструкция как сделать асинхронный генератор достаточно проста. Для этого достаточно найти рабочий асинхронный электродвигатель.

Разобрав его необходимо убедиться в пригодности подшипников, находящихся на роторе и при необходимости их заменить. Далее на токарном станке уменьшается диаметр сердечника ротора на 2-3 мм.

Кроме этого делаются восемь углублений для неодимовых магнитов. Клеем магниты и герметизируем ротор. Проводами подключить статарную обмотку к нагрузке генератора.

Проверка и запуск в работу

После того как генератор будет собран необходимо проверить его на работоспособность. Для этого в качестве нагрузки можно использовать обыкновенную лампочку накаливания.

Причем начальная скорость вращения генератора должна быть небольшой. И по мере ее увеличения яркость накала лампочки должна увеличиваться.

Фото генераторов из асинхронного двигателя

Вам понравилась статья? Поделитесь 😉  

Асинхронный электродвигатель в качестве генератора

Генератор из асинхронного двигателя своими руками 220в

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О.

Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части – статора и подвижной части – ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя.

Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий.

Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название – короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу.

По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС).

Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток.

Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора.

Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели, которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы – трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность.

Работа асинхронного электродвигателя в генераторном режиме

Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим.

Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314·U2·C·10-6,

где С – ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·АХолостой ходПолная нагрузка
ёмкость, мкФреактивная мощность, кварcos = 1cos = 0,8
ёмкость, мкФреактивная мощность, кварёмкость, мкФреактивная мощность, квар
2,0 3,5 5,0 7,0 10,015,028 45 60 74 921201,27 2,04 2,72 3,36 4,185,4436 56 75 98 1301721,63 2,54 3,40 4,44 5,907,8060 100 138 182 2453422,72 4,53 6,25 8,25 11,115,5

Таблица1

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости.

Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы.

Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте.

Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом.

Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя.

В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя-генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

  • бытовые сварочные трансформаторы;
  • электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);
  • электропечи типа “Россиянка”, “Мечта” мощностью до 2 кВт;
  • электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии.

Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт.

Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме – “резки” металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях.

Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом.

КМ – косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора

Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит “драгоценное” топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа “Ока”, “Волга”, поливальных насосов “Агидель”, “БЦН” и пр.

У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить.

Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) – больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%.

Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя.

При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других – коммутируют цепь возбуждения.

Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя.

Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: “фазу” и “ноль”.

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он “не любит” холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы – 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме “холостого хода” должно на 4…6 % превышать промышленное значение 220/380 В.

Генератор из асинхронного двигателя своими руками: от А до Я

Генератор из асинхронного двигателя своими руками 220в

Идея иметь автономной источник электрической энергии и не зависеть от стационарной государственной сети волнует умы многих жителей сельской местности.

Реализовать ее довольно просто: нужен трехфазный асинхронный электродвигатель, который можно использовать даже со старого, списанного промышленного оборудования.

Генератор из асинхронного двигателя своими руками делается по одной из трех схем, публикуемых в этой статье. Он будет бесплатно и надежно преобразовывать механическую энергию в электричество.

Как подобрать электродвигатель

Чтобы исключить ошибки на стадии проекта необходимо уделить внимание конструкции приобретаемого двигателя, а также его электрическим характеристикам: потребляемой мощности, величине напряжения питания, числу оборотов ротора.

Асинхронные машины обратимы. Они способны работать в режиме:

· электродвигателя, когда на них подается внешнее напряжение;

· или генератора, если их ротор вращает источник механической энергии, например, водяное либо ветряное колесо, двигатель внутреннего сгорания.

Обращаем внимание на заводскую табличку, конструкцию ротора и статора. Учитываем их особенности при создании генератора.

Что надо знать о конструкции статора

У него на общем сердечнике магнитопровода намотаны три изолированных обмотки для питания от каждой фазы напряжения.

Их подключают одним из двух способов:

1. Звездой, когда все концы собраны в одну точку. На 3 начала и общий вывод концов подается напряжение по четырем проводам.

2. Треугольником — конец одной обмотоки подключен к началу другой так, что схема собрана кольцом и из нее выходят всего три провода.

Более подробно эта информация изложена в статье моего сайта о подключении трехфазного двигателя в бытовую однофазную сеть.

Особенности конструкции ротора

На нем тоже создан магнитопровод и три обмотки. Они соединяются одним из двух способов:

1. через контактные выводы у двигателя с фазным ротором;

2. накоротко замкнуты алюминиевой вставкой в конструкцию беличьего колеса — асинхронные машины.

Нам нужен ротор короткозамкнутый. Все схемы разработаны для него.

Конструкцию фазного ротора тоже можно использовать в качестве генератора. Но ее придется переделать: просто шунтируем все вывода между собой закоротками.

Как учесть электрические характеристики двигателя

На работу генератора повлияют:

1. Диаметр провода обмотки. От него напрямую зависит нагрев конструкции и величина приложенной мощности.

2. Расчетная скорость вращения ротора, указываемая числом оборотов.

3. Способ соединения обмоток в звезду или треугольник.

4. Величина потерь энергии, определяемая КПД и косинусом φ.

Их смотрим на табличке или вычисляем косвенными методами.

Как заставить электродвигатель перейти в режим генератора

Необходимо выполнить два действия:

1. Раскрутить ротор от источника посторонней механической мощности.

2. Возбудить в обмотках электромагнитное поле.

Если с первым пунктом все понятно, то для второго достаточно подключить к обмоткам батарею конденсаторов, создав емкостную нагрузку определенной величины.

Для этого вопроса разработано несколько вариантов схем.

Полная звезда

Конденсаторы включают между каждой парой начал обмоток.

Упрощенная звезда

В этой схеме пусковой и рабочий конденсаторы подключаются своими выключателями.

Какие нужны номиналы конденсаторов

Проще всего использовать бумажные конденсаторы с напряжением от 500 вольт и выше. Электролитические модели лучше не применять: они могут закипеть и взорваться.

Формула определения емкости имеет вид: С=Q/2π∙f∙U2.

В ней Q — реактивная мощность, f — частота, U — напряжение.

Подбор конденсаторов облегчает таблица.

Условия эксплуатации

На безопасность работы генератора влияют:

· установка в схему измерительных приборов тока и напряжения фаз;

· использование защит: автоматических выключателей и УЗО;

· работа схемы резервирования;

· оптимальный выбор системы фазных и линейных напряжений;

· подключение потребителей без перегрузок оборудования;

· контроль рабочей частоты.

Более подробно эта информация рассмотрена специальной статьей на моем сайте. Приглашаю ознакомиться и задать вопросы в разделе комментариев.

Посмотрите видеоролик Ильи Петровича по этой теме и прочитайте комментарии к нему. Там много полезной информации. Относитесь критически.

До встречи в следующей публикации.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.